4262 BIOCHEMISTRY CORRECTIONS

CORRECTIONS

Activity of Polynucleotide Phosphorylase with Nucleoside Diphosphates Containing Sugar Ring Modifications, by D. M. Hawley, J. J. Sninsky, G. N. Bennett, and P. T. Gilham,* Volume 17, Number 11, May 30, 1978, pages 2082–2086.

Page 2085. In column 2, fifth line from the top, for $Na_3B_2O_4\cdot 10H_2O$ read $Na_2B_4O_7\cdot 10H_2O$.

Retention of the Oxygens at C-2 and C-3 of D-Ribulose 1,5-Bisphosphate in the Reaction Catalyzed by Ribulose-1,5-bisphosphate Carboxylase, by Julia M. Sue and Jeremy R. Knowles,* Volume 17, Number 19, September 19, 1978, pages 4041–4044.

Page 4043. The title of Scheme III should read as follows: Predicted ¹⁸O-Labeling Patterns for the Two Molecules of 3-Phospho-D-glycerate If There Is (A) No Loss or (B) Exchange of the Oxygen at C-3 of RuBP during the Reaction^a.

Distribution and Characterization of the Serum Lipoproteins and Their Apoproteins in the Rainbow Trout (*Salmo gairdnerii*), by M. John Chapman,* Sonia Goldstein, Gervase L. Mills, and Claude Leger, Volume 17, Number 21, October 17, 1978, pages 4455–4464.

Page 4463. In column 1, the fourth line from the top should read as follows: representing some 35% and some 60% of apo-VLDL and apo-LDL-2, respectively.

Binding of Recrystallized and Chromatographically Purified 8-Anilino-1-naphthalenesulfonate to *Escherichia coli lac* Repressor, by Sheldon S. York,* Robert C. Lawson, Jr., and Dilip M. Worah, Volume 17, Number 21, October 17, 1978, pages 4480–4486.

Page 4480. In footnote 1, the abbreviation bis(Ans) should be defined as bis[4,4'-(1-anilino-8-naphthalenesulfonate)].

Association of *Escherichia coli lac* Repressor with Poly-[d(A-T)] Monitored with 8-Anilino-1-naphthalenesulfonate, by Dilip M. Worah, Kathleen M. Gibboney, Lian-Mei Yang, and Sheldon S. York,* Volume 17, Number 21, October 17, 1978, pages 4487–4492.

Page 4487. In footnote 1, the abbreviation bis(Ans) should be defined as bis[4,4'-(1-anilino-8-naphthalenesulfonate)].

Photochemistry of Cytosine Derivatives. 1. Photochemistry of Thymidylyl- $(3'\rightarrow5')$ -deoxycytidine, by Fu-Tong Liu and N. C. Yang,* Volume 17, Number 23, November 14, 1978, pages 4865–4876.

Page 4869. In Scheme III structures **3c** and **3d** were incorrectly identified. The correct structures are

Respiration-Dependent Proton Translocation and the Transport of Nitrate and Nitrite in *Paracoccus denitrificans* and Other Denitrifying Bacteria, by Jakob K. Kristjansson, Bert Walter, and Thomas C. Hollocher,* Volume 17, Number 23, November 14, 1978, pages 5014–5019.

Pages 5014 and 5019. Reference to *Pseudomonas aeruginosa*, twice on p 5014 and once on page 5019, should read *Pseudomonas denitrificans*.

Protein Allergens of White-Faced Hornet, Yellow Hornet, and Yellow Jacket Venoms, by T. P. King,* A. K. Sobotka, A. Alagon, L. Kochoumian, and L. M. Lichtenstein, Volume 17, Number 24, November 28, 1978, pages 5165–5174.

We have previously stated that yellow jackets of the *V. maculifrons*, *V. vulgaris*, and *V. germanica* species cross-breed and often share the same nests. This is incorrect.—T. P. King.

Determination of the Primary Structures of 16 Asialo-Carbohydrate Units Derived from Human Plasma α_1 -Acid Glycoprotein by 360-MHz ¹H NMR Spectroscopy and Permethylation Analysis, by Bernard Fournet, Jean Montreuil, Gérard Strecker, Lambertus Dorland, Johan Haverkamp, Johannes F. G. Vliegenthart, J. Paul Binette, and Karl Schmid,* Volume 17, Number 24, November 28, 1978, pages 5206–5214.

Page 5211. In Chart IV, residue 7', the linkage given as α should be β .

Acyldiglucosyldiacylglycerol-Containing Lipoteichoic Acid with a Poly(3-O-galabiosyl-2-O-galactosyl-sn-glycero-1-phosphate) Chain from Streptococcus lactis Kiel 42172, by

H. U. Koch and W. Fischer,* Volume 17, Number 24, November 28, 1978, pages 5275-5281.

Page 5275. In the abstract, lines 3–5 should read as follows: identified as 1,2-di-O-acyl-3-O-[O- α -D-glucopyranosyl-(1 \rightarrow 2)- α -D-glucopyranosyl-(1 \rightarrow 2)-(6-O-acyl- α -D-glucopyranosyl)]glycerol.

Structure and Thermodynamic Properties of the Complexes between Phospholipase A₂ and Lipid Micelles, by P. Soares de Araujo,* M. Y. Rosseneu, J. M. H. Kremer, E. J. J. van Zoelen, and G. H. de Haas, Volume 18, Number 4, February 20, 1979, pages 580–586.

Page 583. In Table II, for $K'_D \times 10^3$, read $K'_D \times 10^6$.

Measurement of Macromolecular Equilibrium Binding Constants by a Sucrose Gradient Band Sedimentation Method. Application to Protein-Nucleic Acid Interactions, by David E. Draper and Peter H. von Hippel,* Volume 18, Number 5, March 6, 1979, pages 753-760.

Page 755. In Table I, footnote a, the NaCl concentration of the buffer used should have been given as 10.0 mM, not of 1.0 mM NaCl as listed. This is important because the DNA-RNase binding constant is strongly dependent on salt concentration. In addition, the Mg(OAc)₂ concentration listed in Table I, footnote c, should have been 5.0 mM.

Investigation of the Pre-Steady-State Kinetics of Fructose Bisphosphatase by Employment of an Indicator Method, by Patricia A. Benkovic, Mohammed Hegazi, Brian A. Cunningham, and Stephen J. Benkovic,* Volume 18, Number 5, March 6, 1979, pages 830–835.

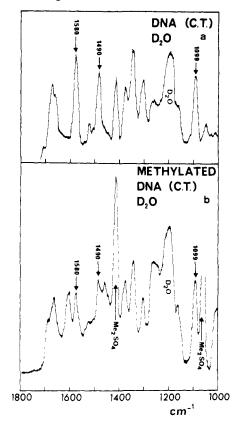
Page 832. In Table I, the buffer capacities of phenol red and FBPase should be 0.066 and 6.87, respectively.

Partial Purification and Characterization of a Human 3-Methyladenine-DNA Glycosylase, by Thomas P. Brent, Volume 18, Number 5, March 6, 1979, pages 911-920.

Page 912. In column 2, lines 26–28 should read as follows: An alternative solvent system consisted of 2-propanol- NH_4OH-H_2O (7:1:2 by volume).

Amino Acid Catalyzed Condensation of Purines and Pyrimidines with 2-Deoxyribose, by Gary L. Nelsestuen, Volume 18, Number 13, June 26, 1979, pages 2843–2846.

An important reference to the scientific literature was inadvertently omitted. Dr. J. A. Carbon [(1964) J. Am. Chem. Soc. 86, 720] previously demonstrated the direct condensation of certain purines with deoxyribose. The mechanism is apparently similar, although amine catalysts were not used. Somewhat higher temperatures and longer reaction times will affect the condensation of at least the purines (and, presumably, the pyrimidines) with deoxyribose in the absence of amine catalysts.


Fluorescence Studies of the Pyruvate Dehydrogenase Multienzyme Complex from *Escherichia coli*, by Kimon J. Angelides and Gordon G. Hammes,* Volume 18, Number 7, April 3, 1979, pages 1223–1229.

Because of an error in the calculation of the overlap integral, the distances between pyrene-labeled lipoic acid and FAD are somewhat shorter than in Table II. The error was due to the use of the difference spectrum between the enzyme complex and the enzyme complex free of FAD rather than the difference spectrum between the enzyme complex with oxidized and reduced FAD. This does not alter the conclusions reached. The range in intermolecular distances between N-(3-pyrene)maleimide on lipoic acid in different environments and FAD is now 21 to >41 Å rather than 23 to >47 Å. The corrected entries in Table II are given below; FAD is the energy acceptor in all cases.

energy donor	$R_{0}(A)$	R (A)
1.5 MalPy	26.6	33
5 MalPy	27.5	34
11 MalPy	26.7	36
13 MalPy	25.5	38
18 MalPy	25.1	>41
35 MalPy	24.8	>41
48 MalPy	23.8	>39
40 MalNEt, 5 MalPy	24.9	21
20 MalNEt, 5 MalPy	24.4	27

Nucleosome Structure: Sites of Interaction of Proteins in the DNA Grooves as Determined by Raman Scattering, by D. C. Goodwin, J. Vergne, J. Brahms,* N. Defer, and J. Kruh, Volume 18, Number 10, May 15, 1979, pages 2057–2064.

Page 2062. Figure 8 is incorrect. The correct figure is

